If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20-p^2=4p
We move all terms to the left:
20-p^2-(4p)=0
We add all the numbers together, and all the variables
-1p^2-4p+20=0
a = -1; b = -4; c = +20;
Δ = b2-4ac
Δ = -42-4·(-1)·20
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*-1}=\frac{4-4\sqrt{6}}{-2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*-1}=\frac{4+4\sqrt{6}}{-2} $
| X2+3x-56=0 | | (6x-5)(3x-1)=0 | | y=350+0.5y | | y=1500+0.75y | | (-2x/5)+11=x+1 | | 4x2=4x-1 | | 8-7k=-48 | | 12x^2-46x-70=0 | | 4-(2p-6/3)=2p-8 | | (x+1)^2-9=3 | | x^2-2/x^2+2(x+1/x)=3-x/x+3x^2-9x+1 | | x2+3x+8=0 | | z*7+5=4 | | 12x=6x+24 | | 2n^2+3n-12=-3 | | 5x+6=2x+18 | | x²-9x+20=0 | | 4n^2-10n+2=-2 | | 5(x-6=-20 | | 5x=4x+14 | | 3x+273=360 | | 2n^2-n-8=-2 | | -6-n+2n^2=0 | | x+2x/3=18 | | y-5y/7=6 | | 12b^2-36b+30=3 | | x(x-2)=9-2x | | X/2+3+2x=17-x | | 3k^2-9k-84=0 | | 4x+x+x-3+x-1=5+x+x | | (3x-1)(2x+2)=0 | | n+2=( |